Decay time control of mass diffusion in a transient grating using a fringe-tunable electrothermal Fresnel mirror

نویسندگان

  • Yuki KIUCHI
  • Yoshihiro TAGUCHI
  • Yuji NAGASAKA
چکیده

This paper reports a microelectromechanical systems (MEMS) mirror with electrothermal polymer actuators for the diffusion sensor. A compact and high-speed diffusion sensor is desirable for point-of-care testing because of its real-time monitorability and portability, and because diffusion coefficient reflects the abnormality of biological samples such as proteins. Herein, a fringe-tunable electrothermal Fresnel mirror (FEFM) is analyzed to maximize the mirror’s angular shift while maintaining the repeatability of the actuator drive. The thermal-response-speed and temperature-distribution characteristics were examined. The proposed fabrication process contributed toward improving the yield and quality of the device. The diffusion coefficient was successfully measured using the fabricated FEFM. Moreover, by making the fringe spacing 7.1 times narrower than its initial value, the decay time of diffracted light became 50 times faster than that of the wider fringe, thereby showing reasonable agreement with theory. The results validated the development of a compact, high-speed diffusion sensor that realizes control of the decay time of the mass diffusion in a transient grating using an FEFM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal.

We propose a switchable phase grating using fringe field switching (FFS) cells. The FFS phase grating possesses several attractive features: large diffraction angle, high diffraction efficiency, fast response time, and high contrast ratio. It can diffract >32% light to ± 2nd orders with a large diffraction angle of 12.1°. Meanwhile, its response time remains relatively fast even at -40°C. A sim...

متن کامل

-

In this paper a method for digitally recording four quarter-reference-wave-holograms (by CCD) in a Mach-Zehnder interferometer setup, and reconstructing the object wave-front by numerical method is presented. The terms of direct transmission, auto-correlation and conjugate wave in the four wave reconstruction are cancelled out and only one original object wave is left after overlapping. Reconst...

متن کامل

Carrier Dynamics in InGaN/GaN SQW Structure Probed by the Transient Grating Method with Subpicosecond Pulsed Laser

Carrier dynamics in GaN and InGaN/GaN SQW structures were observed by using the transient grating (TG) method with sub-picosecond pulsed laser at room temperature. The diffusion coefficients (D) of photo-created carriers were estimated by the decay rate time of TG signals and the photoluminescence (PL) lifetime. It was found that D depends on the emission wavelength (In composition). The relati...

متن کامل

Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry

Using the transfer matrix method, the effect of temperature on thetransmission spectra of thermal tunable nano metallic photonic crystal filter has beeninvestigated. Three different materials H (high refractive index material), L (lowrefractive index material) and M as a metallic layer, have been used to make thisstructure. M layer is considered to be Silver. The complex refractive index of Sil...

متن کامل

Mask pattern transferred transient grating technique for molecular-dynamics study in solutions

We have developed a mask pattern transferred transient grating (MPT-TG) technique by using metal grating films. Transient thermal grating is generated by an ultraviolet light pattern transfer to nitrobenzene in 2-propanol solution, and the subsequent effect is detected through its diffraction to a probe beam. The thermal diffusion coefficient is obtained by the relationship between the grating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017